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Abstract

We consider the von Kármán nonlinearity and the Casimir force to first develop a reduced-order model for a prestressed

clamped elliptic electrostatically actuated microplate, and then use it to study vibrations and pull-in instability. The

reduced-order model is derived by taking a family of linearly independent kinematically admissible functions as basis

functions for the transverse displacement. The in-plane displacement vector is expressed as the sum of displacements for

irrotational and isochoric waves in a two-dimensional medium. The potentials of these two displacement vector fields

satisfy an eigenvalue problem analogous to that of transverse vibrations of a linear elastic membrane. Basis functions for

the transverse and the in-plane displacements are related by using the nonlinear equation governing the plate’s in-plane

motion. The reduced-order model is derived from the equation governing the transverse deflection of the plate. Pull-in

parameters are found using the displacement iteration pull-in extraction method and by studying small vibrations of

the plate about its predeformed configuration. However, the effect of inertia forces on pull-in parameters has not

been analyzed. The reduced-order model for a linear elliptic micromembrane is derived as a special case of that for an

elliptic plate.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Electrostatically actuated microelectromechanical systems (MEMS) are used as transistors, switches, micro-
mirrors, pressure sensors, micro-pumps, moving valves, and micro-grippers, see for example Refs. [1–4]. An
electrostatically actuated MEMS is comprised of a conductive deformable body suspended above a rigid
grounded body [5]. An applied direct current (DC) voltage between the two bodies results in the deflection of
the deformable body and a consequent change in the system capacitance. When an alternating current is
superimposed on the DC voltage to excite harmonic motions of the system, resonant devices are obtained.
These devices are used in signal filtering and chemical and mass sensing, see for example Refs. [6–15].
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.02.008

ing author.

esses: rbatra@vt.edu (R.C. Batra), mporfiri@poly.edu (M. Porfiri), dspinell@vt.edu (D. Spinello).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.02.008
mailto:rbatra@vt.edu
mailto:mporfiri@poly.edu
mailto:dspinell@vt.edu


ARTICLE IN PRESS
R.C. Batra et al. / Journal of Sound and Vibration 315 (2008) 939–960940
The applied DC voltage has an upper limit beyond which the electrostatic force is not balanced by the
elastic restoring force in the deformable conductor. Beyond this critical voltage the deformable conductor
snaps and touches the lower rigid plate. This phenomenon, called pull-in instability, has been experimentally
observed in Refs. [16,17]. The critical displacement and the critical voltage associated with this instability are
called pull-in displacement and pull-in voltage, respectively. Their accurate evaluation is crucial in the design
of electrostatically actuated MEMS. In particular, in micro-mirrors [2] and micro-resonators [18], the designer
avoids this instability in order to achieve stable motions; while in switching applications [1], the designer
exploits this effect to optimize the performance of the device.

For a wide class of electrostatic MEMS, the deformable electrode is a flat body whose thickness h is much
smaller than its characteristic in-plane dimension a [19]. Such electrodes can be regarded as two-dimensional
plate-like bodies. Since h=a51, an approximate distributed model can be employed, where the system
kinematics is described only through the displacement of points on the movable electrode mid-surface, see for
example Ref. [20]. Linear and nonlinear microplates have been studied in Refs. [21–24,60]. When the bending
stiffness of the deformable electrode is negligible compared to its in-plane stretching stiffness and g0=a51,
where g0 is the initial gap between the two plates, the electrode can be regarded as a linear elastic membrane.
The membrane approximation is valid for a=hX400, see for example Ref. [25]. Linear elastic micromembranes
have been studied in Refs. [26–31]. As discussed in Ref. [26], the plate and the membrane approximations are
accurate and reliable for many MEMS such as micro-pumps made of thin glassy polymers and grating light
valves comprised of stretched thin ribbons.

With the decrease in device dimensions from the micro to the nanoscale, additional forces on
nanoelectromechanical systems (NEMS), such as the Casimir force [32,33] or the van der Waals force [34],
should be considered. The Casimir force represents the attraction of two uncharged material bodies due to
modification of the zero-point energy associated with the electromagnetic modes in the space between them.
The existence of the Casimir force poses a severe constraint on the miniaturization of electrostatically actuated
devices. At the nanoscale, the Casimir force may overcome elastic restoring actions in the device and lead to
the plates’ sticking during the fabrication process. An important feature of the Casimir effect is that, even
though its nature is quantistic, it predicts a force between macroscopic bodies.

van der Waals forces are related to electrostatic interaction among dipoles at the atomic scale [34]. Whereas
the Casimir force between semi-infinite perfectly conducting parallel plates depends only on the geometry, van
der Waals forces depend on material properties of the media. The Casimir force is effective at longer distance
than van der Waals forces [34]. van der Waals forces are accounted for in NEMS where interactions occur at
the atomic scale, as for example in carbon nanotubes [35]. van der Waals forces are not considered in the work
presented below. The effect of van der Waals forces on the pull-in instability of electrostatically actuated
microplates has been studied in Ref. [61].

In order to alleviate difficulties associated with the analysis of distributed nonlinear systems, considerable
efforts have been devoted to developing reliable reduced-order models for MEMS. A simple lumped
spring–mass–system for estimating pull-in parameters has been proposed in Ref. [17], where the elasticity of
the deformable body is lumped into the stiffness of a linear spring. The pull-in voltage so obtained usually
exceeds that observed experimentally for many applications [36], and the pull-in displacement always equals
one-third of the initial gap. Moreover, the aforestated description does not generally incorporate inherent
nonlinearities in the restoring forces [4,37]. In Ref. [23], a reduced-order model for microplates that accounts
for the mid-plane stretching and the nonlinearity in the electrostatic force has been used to study pull-in
instability and natural frequencies of a plate predeformed by an electric field. In Ref. [36], microbeams have
been studied through a reduced-order one degree-of-freedom model, which improves the pull-in voltage
estimate of the lumped system of Ref. [17]; however, the pull-in displacement is empirically selected.
Multimode analysis of microbeams using a nonlinear beam equation has been presented in Refs. [6,38]. In
these works, the effect of the number of modes retained in the trial solution on the convergence rate of the
reduced-order model is investigated. In Refs. [39,40], a one degree-of-freedom model has been used to extract
pull-in parameters and to study the fundamental frequency of a narrow microbeam. This reduced-order model
accounts for the mid-plane stretching and fringing fields in the electrostatic load, and it is obtained by taking
the function describing the static deflection of the beam under a uniformly distributed load as the trial solution
in the Galerkin method. Reduced-order models have also been used to study the sticking phenomenon in
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NEMS due to the Casimir force. In Refs. [41,42], a distributed model for a wide microbeam incorporating
nonlinear stretching effects has been studied, while in Ref. [43], a lumped one degree-of-freedom model
has been used to analyze the stiction phenomenon between two conductors made of different materials.
In Ref. [44], the effect of Casimir force on pull-in parameters of NEM switches has been studied using an
approximate analytical expression of the critical gap generated through the perturbation theory. A review on
applications of proper orthogonal decomposition methods to MEMS analysis can be found in Ref. [45]. The
literature on electrostatically actuated MEMS is summarized in Ref. [46].

Here, we derive a reduced-order model for studying static pull-in instability and small vibrations of clamped
elliptic microplates predeformed under the combined effects of the Coulomb and the Casimir forces. Elliptic
plates are a generalization of circular plates. An advantage of the elliptic shape versus the rectangular one is
that stress concentrations usually present at corners of a rectangular plate are absent. In addition, results
derived on elliptic geometries can be useful in assessing the effect of geometrical defects on commonly used
circular shapes. Also, an elliptic plate has higher fundamental frequency than the circular plate of the same
area. Thus, for sensing applications [3,47,48], it may have higher sensitivity to applied disturbances.

Following Ref. [49], we use the large transverse displacement-small strains plate theory [50] by
incorporating the von Kármán nonlinearity in the mechanical model. Since small strains are involved, we
use the parallel plate approximation for the Coulomb force and the proximity force approximation for the
Casimir force. Both these approximations are consistent with the assumption of locally parallel conductors.
Thus, the dependence of the Coulomb and the Casimir forces on the spatial derivatives of the gap g is
neglected. Fringing fields in the electrostatic force are also discarded. We use the Galerkin method to reduce
the governing two-dimensional nonlinear initial-boundary-value problem to a system of nonlinear coupled
ordinary differential equations. Static pull-in parameters are computed from the derived reduced-order model
by neglecting the inertia forces, and by solving a nonlinear algebraic problem in which both the pull-in voltage
and the pull-in displacement are treated as unknowns. For different equilibrium states up to pull-in, the
fundamental frequency of the statically deformed plate is obtained by solving the eigenvalue problem related
to small vibrations about the equilibrium position. We show that the fundamental frequency goes to zero as
pull-in conditions are approached and that the pull-in parameters derived using this technique agree well with
those obtained from the static analysis. Reduced-order models for linear elliptic membranes are obtained as
special cases of those for the corresponding elliptic plates. To our knowledge, the pull-in instability of a von
Kármán elliptic microplate incorporating the Casimir force has not been investigated thus far.

The rest of the paper is organized as follows. In Sections 2 and 3, we describe, respectively, the
electromechanical and the reduced-order models for a von Kármán plate under the effect of the Coulomb and
the Casimir forces. In Section 4, we briefly outline the technique used to solve the reduced-order system of
equations. In Section 5, we present static pull-in parameters and fundamental frequencies of microplates
and micromembranes predeformed by the Coulomb and the Casimir forces. Conclusions are summarized
in Section 6.
2. Formulation of the initial-boundary-value problem

Referring to the geometry in Fig. 1, we consider an elliptic plate-like body of major semiaxis a40 and minor
semiaxis 0oboa, placed into the three-dimensional space region O� ð�h=2; h=2Þ. The mid-surface
O is described by confocal elliptic coordinates ðx1; x2Þ, that are related to rectangular Cartesian coordinates
ðz1; z2Þ by

z1 ¼ aY cosh x1 cos x2;

z2 ¼ aY sinh x1 sin x2;

(
x1 2 ½0; x1

b�; x2 2 ½0; 2pÞ, (1)

where Y2 ¼ 1� b2=a2 and x1
b ¼ arctanhðb=aÞ, see for example Ref. [51].

Let v and T be a vector field and a second-order tensor field in O, respectively. In elliptic coordinates, the
physical dimensions of the covariant components vi and Tij equal, respectively, Length and Length2 multiplied
with physical dimensions of the corresponding fields. For example, the physical dimensions of the covariant
components of the in-plane displacement field are Length2, and the physical dimensions of the covariant
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Fig. 1. Sketch of the electrostatically actuated device.
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components of the in-plane stress field are force. In elliptic coordinates, the covariant, mixed, and
contravariant components of the in-plane identity tensor are given by a2Y2wdij , dj

i, and a�2Y�2w�1dij,
respectively, where

dij ¼ di
j ¼ dj

i ¼ dij
¼

1 if i ¼ j;

0 if iaj

(
(2)

is the Kronecker delta, and the field w is given by

wðx1;x2Þ ¼ 1
2
ðcosh 2x1 � cos 2x2Þ, (3)

see for example Ref. [51].
We assume that the initial gap g0 between the two conductors and the thickness h of the deformable plate

are much smaller than the characteristic length a and that g0 and h can be of the same order of magnitude.
Therefore, the maximum displacement that the device can undergo is of the order of the plate thickness h, but
it is much smaller than the characteristic length a, since h=a51. This implies that strains in the deformable
electrode are small. Under these assumptions, we use the von Kármán plate theory to account for large
deflections and small strains, see for example Ref. [50]. Neglecting the effect of the rotatory inertia, the von
Kármán plate equations in elliptic coordinates are [50]

Rh €wþ
D

a4Y4w
q2

qxkqxk

1

w
q2w

qxjqxj

� �
�

h

a4Y4w
q
qxj

1

w
sjk

qw

qxk

� �
� Fe � Fc ¼ 0, (4a)

R €ui �
1

a2Y2w
sijkj ¼ 0; i ¼ 1; 2. (4b)

We use the Einstein summation convention, meaning that when an index appears twice in a single term we
sum over the range f1; 2g of the index; sijkk is the covariant derivative of the covariant components sij of the in-
plane stress tensor field, that is,

sijkk ¼
qsij

qxk
�

l

ik

� �
slj �

l

jk

� �
sil (5)

with the fields f i
jk
g defined by

i

jk

� �
¼

1

2w
di

k

qw
qxj
þ di

j

qw
qxk
� dildjk

qw
qxl

� �
. (6)

Furthermore in Eqs. (4), D ¼ Eh3=ð12ð1� n2ÞÞ is the bending stiffness of the plate; R, E, and n are the mass
density, the Young’s modulus, and the Poisson’s ratio of the plate material, that is assumed to be
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homogeneous and isotropic; ui and w are the in-plane and the out-of-plane displacements of a point on the
mid-surface; F e and F c are the Coulomb and the Casimir forces; and a superimposed dot means time
derivative. Expressions for the Coulomb and the Casimir forces are discussed below.

For a circular plate, a ¼ b, and one needs to write Eqs. (4a) and (4b) in a different form.
We further note that when sij ¼ sa2Y2wdij , where s is a scalar field having dimensions of stress, and the

rigidity due to in-plane stretching dominates over the bending stiffness in supporting the external load,
Eq. (4a) reduces to the equation governing the deformations of a linear elastic membrane.

In the von Kármán plate theory, the covariant components eij of the in-plane strain tensor in elliptic
coordinates are given by

eij ¼
1

2
uikj þ ujki þ

qw

qxi

qw

qxj

� �
, (7)

where the covariant derivative of the in-plane displacement field is given by

uikj ¼
qui

qxj
�

k

ij

� �
uk. (8)

Assuming the response of the material to be linear elastic with the prestress sa2Y2wdij in the reference
configuration, the constitutive relation under the Kirchhoff assumption is, see for example Ref. [52],

sij ¼
E

1þ n
eij þ

n
1� n

ekkdij

� �
þ sa2Y2wdij. (9)

Substituting for sij from Eq. (9) into Eq. (4), assuming that s is a constant scalar field, and using Eq. (7), we
obtain the following equations for ui and w:

Rh €wþ
D

a4Y4w
q2

qxkqxk

1

w
q2w

qxjqxj

� �
�

B

a4Y4w
q
qxj

1

w
1

2
ujkk þ ukkj

� 	
þ

qul

qxl
djk

� �
qw

qxk

� �

�
B

2a4Y4w
q
qxj

1

w
qw

qxl

qw

qxl

qw

qxj

� �
�

sh

a2Y2w
q2w

qxjqxj
� F e � F c ¼ 0, (10a)

Rh €ui �
B

2a2Y2

1� n
w

uikkk þ ð1þ nÞ
q
qxi

1

w
quk

qxk

� �� �
¼

B

2a2Y2
ð1� nÞ

1

w
qw

qxi

qw

qxk

� �
kk

þ n
q
qxi

1

w
qw

qxk

qw

qxk

� � !
,

(10b)

where B ¼ Eh=ð1� n2Þ is the stretching stiffness of the plate.
From an electrical point of view, the system behaves as a variable gap capacitor. We do not consider

fringing fields in the present work. By assuming that g0=a51, the magnitude Fe of the electrostatic force
acting on the deformable electrode along its normal is given by, see for example Refs. [5,53],

F e ¼ �
E0V2

2g2
0ð1þ ŵÞ2

, (11)

where ŵ ¼ w=g0 is the non-dimensional transverse displacement, and E0 is the dielectric constant in vacuum.
Therefore, the expression for the electrostatic force at a point on the plate depends only on the local gap g.
Thus, the validity of the analysis is limited to those variable gap capacitors whose actual gap is differentially
uniform, that is, the two conductors are locally parallel to each other, see for example Refs. [5,53].

We use the proximity force approximation for the Casimir force F c, that is consistent with assumptions
made in the mechanical and the electrostatic models. In the proximity force approximation, curved surfaces
are viewed as a superposition of infinitesimally small parallel plates, see for example Refs. [54,55] and
references therein. In Ref. [55], it is shown that for a sphere of radius R separated from a flat plate by a
distance g, the proximity force approximation gives results within 1% accuracy for g=Ro0:1. By adopting this
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approximation we have

F c ¼ �
_cp2

240g4
0ð1þ ŵÞ4

, (12)

where _ is Plank’s constant and c the speed of light in vacuum. Corrections to Eq. (12) for geometries with
known and fixed departures from the parallel configurations are given in Refs. [54,55]. However, Eq. (12) is
consistent with the parallel-plate approximation for the electrostatic force and with the small deformations
assumption in the mechanical model. Both the Coulomb force and the Casimir force are assumed to act along
the normal to the undeformed plate. Thus effects of changes in their orientations due to plate’s deformations
have been neglected.

For convenience, we introduce the non-dimensional time t̂ ¼ t=t, where the characteristic time is defined by

t2 ¼
12Ra4Y4

Eh2
ð1� n2Þ (13)

and the non-dimensional in-plane displacement components ûi ¼ ui=g2
0, with i ¼ 1; 2. Henceforth, we use a

superimposed dot to denote time derivative with respect to t̂. Also, we drop the superimposed hat on non-
dimensional variables. Thus, Eqs. (10) become

€wþ
1

w
q2

qxkqxk

1

w
q2w

qxjqxj

� �
�

12a
w

q
qxj

1

w
1

2
ujkk þ ukkj

� 	
þ

qul

qxl
djk

� �
qw

qxk

� �

�
6a
w

q
qxj

1

w
qw

qxl

qw

qxl

qw

qxj

� �
�

b
w

q2w

qxjqxj
þ

l

ð1þ wÞ2
þ

m

ð1þ wÞ4
¼ 0, (14a)

g €ui � ð1� nÞ
uikkk

w
� ð1þ nÞ

q
qxi

1

w
quk

qxk

� �
¼ ð1� nÞ

1

w
qw

qxi

qw

qxk

� �
kk

þ n
q
qxi

1

w
qw

qxk

qw

qxk

� �
, (14b)

where

a ¼
g2
0

h2
; b ¼ 12

sa2Y2

Eh2
ð1� n2Þ; g ¼

h2

6a2Y2
,

l ¼
6�0V

2a4Y4

Eh3g3
0

ð1� n2Þ; m ¼
_cp2a4Y4

20Eh3g5
0

ð1� n2Þ. (15)

Non-dimensional parameters b, l, and m are indicators of the MEMS relative stiffening due to the initial
stress, the Coulomb force, and the Casimir force, respectively. Their values depend upon the elastic moduli of
the material of the plate, the initial gap g0, the plate thickness, and its geometry. With values of all other
parameters kept fixed, a decrease in the initial gap g0 increases m significantly more than it increases l. Since
the von Kármán approximation holds for h=a51, we neglect in-plane the inertial term in Eq. (14b) and obtain
the following simplified form for the in-plane motion:

ð1� nÞ
1

w
uikkk þ ð1þ nÞ

q
qxi

1

w
quk

qxk

� �
¼ �ð1� nÞ

1

w
qw

qxi

qw

qxk

� �
kk

� n
q
qxi

1

w
qw

qxk

qw

qxk

� �
. (16)

We note that Eq. (16) links the in-plane and the transverse displacements.
We consider the boundary G of O to be clamped. The kinematic boundary conditions for a clamped edge

are [56]

w ¼ 0 and
qw

qx1
¼ 0, (17a)

ui ¼ 0; i ¼ 1; 2. (17b)

Initial conditions are not needed since we either study static deformations of the MEMS or analyze resonance
frequencies of small vibrations around an electrostatically deformed configuration.
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3. Reduced-order system

A closed-form solution of the initial-boundary-value problem defined by Eqs. (14a) and (16) and boundary
conditions (17) cannot be found. An approximate solution is constructed by expressing the displacement fields
ui, with i ¼ 1; 2, and w through

wðx1;x2; tÞ ¼
XN

n¼1

wðnÞðx
1;x2ÞzðnÞðtÞ ¼WTðx1; x2ÞfðtÞ, (18a)

uiðx
1;x2; tÞ ¼

XP

p¼1

uðpÞiðx
1; x2ÞxðpÞðtÞ ¼ UTðx1;x2ÞnðtÞ, (18b)

where wðnÞ and uðpÞi are basis functions for the transverse and the in-plane displacements, and zðnÞ and xðpÞ are
the corresponding amplitude parameters or equivalently the mode participation factors. Basis functions
are collected into the N-vector W and into the P-vector U, and amplitudes are collected into the N-vector f

and into the P-vector n. Each basis function satisfies the corresponding kinematic boundary conditions in
Eqs. (17a) and (17b).

3.1. Basis functions for the in-plane displacement

A basis function for the in-plane displacement is determined by solving the following linear eigenvalue
problem associated with Eq. (14b), see for example Ref. [50],

k2ui þ ð1� nÞ
uikkk

w
þ ð1þ nÞ

q
qxi

1

w
quk

qxk

� �
¼ 0, (19)

where k is the wave number. Following Ref. [50], we decompose the in-plane displacement as ūi ¼ ūn
i þ ūt

i ,
i ¼ 1; 2, where ūn

i and ūt
i are displacements associated, respectively, with the longitudinal and the transverse

waves, and satisfy

e
jk
3

qun
j

qxk
¼ 0, (20a)

qut
k

qxk
¼ 0, (20b)

where e
jk
i ¼ 0 if any of the two indices are equal, and e

jk
i ¼ �1 if fi; j; kg is an even or an odd permutation of

f1; 2; 3g. Therefore, Eq. (19) is equivalent to the following two equations [50]:

un
ikkk þ wZ2nun

i ¼ 0, (21a)

ut
ikkk þ wZ2t ut

i ¼ 0, (21b)

where Zn ¼ k=
ffiffiffi
2
p

and Zt ¼ k=
ffiffiffiffiffiffiffiffiffiffiffi
1� n
p

are the wavenumbers of the longitudinal and the transverse waves,
respectively.

Using Eq. (20a), we solve Eq. (21a) by introducing the scalar potential f through un
i ¼ qf=qxi. Therefore,

within an arbitrary additive constant, Eq. (21a) reduces to

q2f
qxjqxj

þ 2Ẑ2nðcosh 2x1 � cos 2x2Þf ¼ 0, (22)

where 2Ẑn ¼ Zn.
In order to solve Eq. (21b), we use Eq. (20b) to introduce the vector potential Fj, j ¼ 1; 2; 3, through

ut
i ¼ �e

jk
i qfj=qxk. Since ut

i are components of an in-plane vector field in O, we have that qF1=qx2 ¼ qF2=qx1.
Moreover, since the components of the vector potential are also in-plane fields in O, we have
qF1=qz ¼ qF2=qz ¼ 0. It follows that, by defining the scalar field F ¼ F3, we can write ut

i ¼ �e3k
i qF=qxk.

Therefore, within an arbitrary additive vector field satisfying Eq. (20b), the vector eigenvalue problem defined
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by Eq. (21b) reduces to the scalar one

q2F
qxjqxj

þ 2Ẑ2t ðcosh 2x1 � cos 2x2ÞF ¼ 0, (23)

where 2Ẑt ¼ Zt.
By integrating Eq. (20) over the domain O and by applying the curl and the divergence theorems to

transform surface integrals into line integrals, Eq. (20) implies the following set of boundary conditions for the
displacements associated with the longitudinal and the transverse waves

un
2ðx

1
b;x

2Þ ¼ 0; ut
1ðx

1
b; x

2Þ ¼ 0. (24)

Additional boundary conditions provided by Eq. (17b) are:

un
1ðx

1
b; x

2Þ ¼ ut
2ðx

1
b;x

2Þ ¼ 0; ut
2ðx

1
b; x

2Þ ¼ un
1ðx

1
b;x

2Þ ¼ 0. (25)

We note that the governing equations for the potentials f and F, that is, Eqs. (22) and (23), respectively, are
equivalent. Nevertheless, the normal and transverse displacement fields are generally different since the relation
between them and their corresponding potentials are different. The general solution of Eqs. (22) and (23) is [57]

cðx1; x2Þ ¼
X1
m¼0

AC
mCemðx

1; qÞcemðx
2; qÞ þ

X1
r¼1

AS
r Serðx

1; qÞserðx
2; qÞ, (26)

where AC
m and AS

r are real constants, CemðZ; qÞ ¼ cemð{Z; qÞ, SerðZ; qÞ ¼ serð{Z; qÞ, { ¼
ffiffiffiffiffiffiffi
�1
p

, cem and ser are the
Mathieu cosine and the Mathieu sine functions of integer order. The characteristic parameter q equals Ẑ2n=4 and
Ẑ2t =4 for normal and for transverse waves, respectively. Functions un

i and ut
i are given by

un
1 ¼

qc
qx1

¼
X1
m¼0

AC
m

qCem

qx1
ðx1; qÞcemðx

2; qÞ þ
X1
r¼1

AS
r

qSer

qx1
ðx1; qÞserðx

2; qÞ, (27a)

un
2 ¼

qc
qx2

¼
X1
m¼0

AC
mCemðx

1; qÞ
qcem

qx2
ðx2; qÞ þ

X1
r¼1

AS
r Serðx

1; qÞ
qser

qx2
ðx2; qÞ, (27b)

ut
1 ¼ �

qc
qx2

; ut
2 ¼

qc
qx1

. (27c)

By imposing boundary conditions (24) and (25) on different families of independent functions, we find the
characteristic equations

qCem

qx1
ðx1

b; p̂Þ ¼ 0; Cemðx
1
b; pÞ ¼ 0, (28a)

qSer

qx1
ðx1

b; q̂Þ ¼ 0; Serðx
1
b; qÞ ¼ 0. (28b)

The roots of the characteristic equations (28) have been found with a computer code written in Mathematica
using the built in functions MathieuC and MathieuS. The components of basis functions for the in-plane
displacement are, therefore, given by the following families of functions:

uða1Þiðx
1; x2Þ ¼ A1

mn

qCem

qx1
ðx1; p̂mnÞcemðx

2; p̂mnÞ, (29a)

uðqðpþ1Þþa2Þiðx
1;x2Þ ¼ A2

mnCemðx
1; pmnÞ

qcem

qx2
ðx2; pmnÞ, (29b)

uð2qðpþ1Þþa3Þiðx
1;x2Þ ¼ A3

rn

qSer

qx1
ðx1; q̂rnÞserðx

2; q̂rnÞ, (29c)
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uðqð3pþ2Þþa4Þiðx
1; x2Þ ¼ A4

rnSerðx
1; qrnÞ

qser

qx2
ðx2; qrnÞ; i ¼ 1; 2, (29d)

where

a1 ¼ a2 ¼ mqþ n; a3 ¼ a4 ¼ ðr� 1Þqþ n,

m ¼ 0; . . . ; p; r ¼ 1; . . . ; p; n ¼ 1; . . . ; q. (30)

The characteristic values p̂mn, pmn, q̂rn, and qrn are the nth roots of the characteristic Eqs. (28). The number of
basis functions for the in-plane displacement in Eq. (18b) is P ¼ 2qð1þ 2pÞ.
3.2. Basis functions for the transverse displacement

As basis functions for the transverse displacement we use the following family of functions:

wðnÞðx
1; x2Þ ¼ An

Ce0ðx
1; rnÞ

Ce0ðx
1
b; rnÞ
�

Ce0ðx
1;�rnÞ

Ce0ðx
1
b;�rnÞ

� �
ce0ðx

2; rnÞ; n ¼ 1; . . . ;N, (31)

where An is a constant, and the characteristic values rn are determined as roots of the transcendental equation

qCe0
qx1
ðx1

b; rÞCe0ðx
1
b;�rÞ �

qCe0
qx1
ðx1

b;�rÞCe0ðx
1
b; rÞ ¼ 0. (32)

Basis functions in Eq. (31) satisfy boundary conditions (17a) and are symmetric with respect to both the major
and the minor axes [57], thereby ruling out a solution (if there is one) that is asymmetric about either one of
the two axes. The roots of the characteristic Eq. (32) have been found with a computer code written in
Mathematica and based on the use of the built in function MathieuC.
3.3. Relation between n and f

In order to express n in terms of f, we substitute from Eqs. (18a) and (18b) into Eq. (16), take the
inner product of both sides of the resulting equation with the in-plane mode uðpÞi, and integrate over the
domain O. Applying the divergence theorem and imposing boundary conditions (17b) on the boundary
integrals we obtain

xðpÞ ¼ fTHðpÞf, (33)

where the ðN �NÞ symmetric matrix HðpÞ is given by

½HðpÞ�mn ¼ �

Z
O

1

w2
ð1� nÞuðpÞjkk

qwðmÞ

qxj

qwðnÞ

qxk
þ n

quðpÞk

qxk

qwðmÞ

qxj

qwðnÞ

qxj

� �
dO

�

Z
O

1

w2
ðð1� nÞuðpÞjkkuðpÞjkk þ ð1þ nÞðuðpÞkkkÞ

2
ÞdO

� ��1
; m; n ¼ 1; . . . ;N (34)

The covariant derivative uðpÞikj is computed according to the formula given as Eq. (8).
We note that all amplitude coefficients for the transverse displacement are needed for computing any

amplitude coefficient of the in-plane displacement field. In addition, we note that the relation between the
in-plane motion and the transverse motion is nonlinear, and that the in-plane motion vanishes in the linear
theory. Because of the P internal constraints (33), the reduced-order model for the microplate has N degrees of
freedom.
3.4. Equations for the reduced-order system

The reduced-order model is obtained by premultiplying both sides of Eq. (14a) by W, integrating
the resulting equation over O, and substituting into it the approximations given by Eqs. (18) and (33).
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Therefore, we obtainZ
O
WWT €fdOþ

Z
O
W

1

w
q2

qxkqxk

1

w
q2

qxjqxj
ðWTfÞ

� �
dO� 12a

Z
O
W

1

w
q
qxj

1

w
ejk

q
qxk
ðWTfÞ

� �
dO

� 6a
Z
O
W

1

w
q
qxj

1

w
qðWTfÞ

qxk

qðWTfÞ

qxk

qðWTfÞ

qxj

� �
dO� b

Z
O
W

1

w
q2

qxjqxj
ðWTfÞdO

þ l
Z
O

W

ð1þWTfÞ2
dOþ m

Z
O

W

ð1þWTfÞ4
dO ¼ 0, (35)

where

eij ¼
XP

p¼1

xðpÞðfÞV ðpÞij ¼
XP

p¼1

ðfTHðpÞfÞV ðpÞij , (36a)

V ðpÞij ¼
ð1� nÞ

2
ðuðpÞikj þ uðpÞjkiÞ þ n

quðpÞk

qxk

� �
dij. (36b)

From Eqs. (34) and (36), we note that the normalization constants introduced in Eq. (29) do not affect eij. We
now define the following ðN �NÞ matrices:

½D�mn ¼
1

w
qwðmÞ

qxj

qwðnÞ

qxj
, (37a)

½L�mn ¼
1

w2
q2wðmÞ
qxjqxj

q2wðnÞ
qxkqxk

, (37b)

½G�mn ¼
ejk

w2
qwðmÞ

qxj

qwðnÞ

qxk
(37c)

with m; n ¼ 1; . . . ;N. Using the divergence theorem and imposing the boundary conditions in Eq. (17a), we
obtain the following equation for the reduced-order system:

m€fþ ðk1 þ bk2 þ ak3ðfÞÞfþ lfeðfÞ þ mfcðfÞ ¼ 0, (38)

where

m ¼

Z
O
WWT dO, (39a)

k1 ¼

Z
O
LdO; k2 ¼

Z
O
DdO, (39b)

k3ðfÞ ¼ 12

Z
O

Gþ
1

2
ðfTDfÞD

� �
dO, (39c)

feðfÞ ¼

Z
O

W

ð1þWTfÞ2
dO; fcðfÞ ¼

Z
O

W

ð1þWTfÞ4
dO. (39d)

In Eq. (38), ðk1 þ bk2Þ represents the stiffness of a linear elastic plate, and ak3 fð Þ represents the strain-
stiffening effect.

We note that the system represented by Eq. (38) depends on N displacement unknowns. As shown below,
N ¼ 1 gives very good results.
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4. Static pull-in parameters

The tangent stiffness matrix of the reduced-order system is given by

Kðf; l;mÞ ¼ k1 þ bk2 þ ak3ðfÞ þ a
dk3ðfÞ

df
fþ l

dfeðfÞ

df
þ m

dfcðfÞ

df
, (40)

where

dfeðfÞ

df
¼ �2

Z
O

WWT

ð1þWTfÞ3
dO;

dfcðfÞ

df
¼ �4

Z
O

WWT

ð1þWTfÞ5
dO. (41)

From Eqs. (36a) and (37c), we obtain

d½G�mn

df
f ¼ 2

XP

p¼1

1

w2
V ðpÞjk

qwðmÞ

qxj

qwðnÞ

qxk

� �
fTHðpÞ

" #
f ¼ 2½G�mn, (42)

and similarly

dðfTDfÞ½D�mn

df
f ¼ 2ðfTDfÞ½D�mn. (43)

Differentiating both sides of Eq. (39c) with respect to f, and substituting from Eqs. (42) and (43) into the
result, we get

dk3ðfÞ

df
f ¼ 2k3ðfÞ. (44)

Therefore, Eq. (40) can be rewritten as

Kðf; l;mÞ ¼ k1 þ bk2 þ 3ak3ðfÞ þ l
dfeðfÞ

df
þ m

dfcðfÞ

df
. (45)

In what follows, we discuss two equivalent methods to extract static pull-in parameters. The first one is based
on the solution of the static problem, while the second one is based on the study of small vibrations of the
system around static equilibria. The method based on frequency analysis can be used to experimentally
determine the pull-in voltage [9].

4.1. Extraction of pull-in parameters from the static problem

At the onset of instability the system’s tangent stiffness matrix becomes singular. Therefore, at pull-in the
system satisfies Eq. (38) with €f ¼ 0 and the additional condition

det Kðf; l;mÞ ¼ 0. (46)

Critical value of m: The static problem is solved for l ¼ 0 to compute the critical value, mcr, of the Casimir
force parameter. When m ¼ mcr the system collapses spontaneously without applying any voltage, that is, with
V ¼ 0. Thus, such a MEMS can not be fabricated.

Pull-in parameters: The effect of the MEMS size on pull-in parameters lPI and kwPIk1 is investigated by
solving Eq. (38) with variable l for different values of m in the range ½0;mcr�. The pull-in instability
ðlPI; kwPIk1Þ occurs when the curve kwk1ðl;mÞ becomes multi-valued. Here k � k1 is defined as maxðx1;x2Þ2Oj � j.

We use the displacement iteration pull-in extraction (DIPIE) algorithm [58] to solve Eq. (38) with €f ¼ 0.
This algorithm enables one to find the complete bifurcation path by driving the system through the
displacement of a pre-chosen point ðx1;x2Þ 2 O and by treating the load parameter (either l or m) as unknown.
The method is explained for the case of variable l and fixed m. When studying the behavior of the system
under the effect of the Casimir force only, that is, for l ¼ 0 with varying m, exactly the same procedure applies
except that the roles of the two parameters are reversed.

A parameter s, representing the deflection of a point ðx1;x2Þ 2 O, is added. Both f and l are regarded as
functions of s. If the solution ðfi�1; li�1Þ of Eqs. (38) and (46) at the ði � 1Þth load step si�1 ¼WTðx1;x2Þfi�1 is
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known, then the solution ðfi; liÞ ¼ ðfi�1; li�1Þ þ ðDfi;DliÞ corresponding to si ¼ si�1 þ Dsi is obtained by
solving the following system of equations:

ðk1 þ bk2 þ ak3ðfiÞÞfi þ lifeðfiÞ þ mfcðfiÞ ¼ 0, (47a)

WTðx1; x2Þfi ¼ si. (47b)

The index i here refers to the ith load step rather than to the component of a field along the xi coordinate. The
solution of the set of nonlinear Eqs. (47) in terms of the unknowns Dfi and Dli is found by using Newton’s
iterations. Hence, at the generic jth iteration, we have

Kðf
ðjÞ
i ; l

ðjÞ
i ;mÞ

dfeðf
ðjÞ
i
Þ

df

WTðx1;x2Þ 0

2
4

3
5 Df

ðjÞ
i

DlðjÞi

" #
¼ �

ðk1 þ bk2 þ ak3ðf
ðjÞ
i ÞÞf

ðjÞ
i þ lðjÞi feðf

ðjÞ
i Þ þ mfcðf

ðjÞ
i Þ

WTðx1;x2Þf
ðjÞ
i � si

" #
, (48)

where ðDf
ðjÞ
i ;Dl

ðjÞ
i Þ indicates the jth solution increment, and ðf

ðjÞ
i ; l

ðjÞ
i Þ is the updated solution at the ðj � 1Þth

iteration. That is,

f
ðjÞ
i ¼ fi�1 þ

Xj�1
k¼1

Df
ðkÞ
i ; lðjÞi ¼ li�1 þ

Xj�1
k¼1

DlðkÞi . (49)

The iterations are performed until

max½jDf
ðjÞ
i j;Dl

ðjÞ
i �p�T , (50)

where �T is a preassigned small number.
The pull-in value of l equals the maximum value of l for which Eqs. (47) have a solution.

4.2. Extraction of pull-in parameters from the linear eigenvalue problem

The natural frequencies, o, of the deflected plate at a given converged solution ðfi; li;miÞ up to pull-in are
found as follows. We set l ¼ li and m ¼ mi in Eq. (38), and we perturb the equilibrium state fi with a harmonic
term expð{otÞ as fiðtÞ þ f

i
expð{otÞ, where f

i
is a constant vector and kf

i
k5kfik. By retaining only terms linear

in f
i
we obtain the following equation for the determination of o:

detðKðfi; li; miÞ � o2mÞ ¼ 0. (51)

Since the tangent stiffness matrix becomes singular at pull-in, it follows that at the pull-in at least one natural
frequency of the system equals zero. This can be viewed as an alternative way of defining the static pull-in, see
Refs. [6,9,23,24].

5. Results

We have developed a computer code, in Mathematica, to solve the system of nonlinear Eqs. (47) for the
pull-in parameters and to compute the lowest eigenvalue from Eq. (51).

Integrals appearing in the reduced-order model for the microplate have been evaluated using the Gauss
quadrature rule by placing 21� 21 quadrature points in the region ½0;x1

b� � ½0; 2p�. It was found that the
consideration of additional quadrature points did not improve the solution accuracy. A large number of
integration points are needed since integrals are defined over the entire elliptical region.

Results presented below for clamped elliptic plates are for n ¼ 0:25. We apply constant increments jDsij ¼

10�3 to extract pull-in parameters with the DIPIE algorithm. Tolerance �T in Eq. (50) equals 10�7. For l ¼ 0
and m ¼ 0, the numerical scheme is started with s0 ¼ 0, consistent with the assumption that the corresponding
deflection of every point on the plate’s mid-surface is zero. We impose the displacement s at the point
ðx1;x2Þ ¼ ð0;p=2Þ.

We solve the problem for l ¼ 0 to determine the critical parameters ðfcr; mcrÞ, corresponding to the collapse
of the system with zero applied voltage, that is only due to the Casimir force. When solving the problem with
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variable l and assigning values to m in the range ½0;mcr�, the DIPIE scheme is started with s0 ¼WTðx1;x2Þfm,
where fm is the converged set of deflection parameters corresponding to l ¼ 0.

Results are computed with q ¼ p in Eq. (29). Thus the total number of basis functions used to approximate
the displacement field equals N þ P ¼ N þ 2pð1þ 2pÞ, see Section 3; whereas the total number of degrees of
freedom equals N.

5.1. Pull-in parameters from the analysis of the static problem

Tables 1 and 2 show the critical Casimir force parameters kwcrk1 and mcr extracted for a ¼ 1, b ¼ 0, two
aspect ratios b=a, and different values of p, q, and N in Eqs. (29) and (31). For the same number of basis
functions for the in-plane displacement, solutions computed with N ¼ 1 differ from those computed with
N ¼ 5 by only F1%.

According to values listed in Tables 1 and 2 we adopt p ¼ q ¼ 2 and N ¼ 1 to compute results presented
below. Thus the reduced-order system has 1 degree-of-freedom and 20 basis functions for the in-plane
displacement.

For a ¼ 1=ð12ð1� n2ÞÞ, b ¼ 0, and b=a ¼ 0:99, the converged pull-in parameters kwPIk1 ¼ 0:470 and lPI ¼
14:4 match well with the corresponding ones kwPIk1F0:47 and lPIF14 obtained from Fig. 2 of Ref. [24],
wherein the reduced-order model for a circular von Kármán microplate has been formulated in terms of the
transverse displacement and the Airy stress function. This validates our model and provides additional
justification for taking p ¼ q ¼ 2 and N ¼ 1.

In Fig. 2, we plot mcr versus b=a for a ¼ 1 and 4. Due to an increase in the stiffness of the system with a
decrease in the aspect ratio b=a, the critical value of the Casimir force parameter increases significantly with a
decrease in b=a. The critical Casimir force parameters data (points in Fig. 2) are fitted with a fourth order
polynomial in a=b (solid lines in Fig. 2):

mcr ¼ f ðaÞ 1þ
a

b

� �2
þ

a

b

� �4� �
. (52)
Table 1

For b=a ¼ 0:5, the critical Casimir force parameter mcr and the corresponding pull-in displacement infinity norm kwcrk1 with different

number of basis functions for the in-plane and the transverse displacements

N kwcrk1 mcr

p, q ¼ p p, q ¼ p

1 2 4 1 2 4

1 0.316 0.311 0.310 64.7 63.9 63.8

3 0.313 0.308 0.308 64.4 63.6 63.6

5 0.313 0.308 0.307 64.4 63.6 63.6

Table 2

For b=a ¼ 0:75, the critical Casimir force parameter mcr and the corresponding pull-in displacement infinity norm kwcrk1 with different

number of basis functions for the in-plane and the transverse displacements

N kwcrk1 mcr

p, q ¼ p p, q ¼ p

1 2 4 1 2 4

1 0.304 0.302 0.302 25.2 25.1 25.1

3 0.300 0.299 0.299 25.2 25.1 25.1

5 0.300 0.299 0.299 25.2 25.1 25.1
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The function f ðaÞ is plotted in Fig. 3 for a 2 ½0; 4� with the solid line corresponding to the function

f ðaÞ ¼ 2:63þ 0:185a. (53)

Eq. (52) can be solved for a=b in terms of a and mcr. Among the four roots, the only one real and positive
root is

a

b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4jða;mcrÞ

p
� 1

2

s
, (54)

for jða; mcrÞo0, where

jða;mcrÞ ¼ 1�
mcr

f ðaÞ
. (55)

Thus, since mcr is a monotonically increasing function of a=b, for a given a Eq. (54) yields the minimum ratio
a=b of the elliptic MEMS that can be safely fabricated.

We note that mcr rapidly increases with an increase in a=b. Hence for the same value of g0=h, a clamped
elliptic plate with a large value of a=b is less likely to collapse during the fabrication process than a clamped
circular plate with radius equal to a.

Pull-in parameters versus m in the range ½0;mcr� for a ¼ 1, b ¼ 0, and two aspect ratios of the plate are
plotted in Figs. 4 and 5. As m increases, the pull-in parameter lPI decreases monotonically from its maximum
value lmax

PI corresponding to m ¼ 0 to its minimum value 0 for m ¼ mcr; m ¼ mcr represents the intersection of the
curves with the horizontal axis. With an increase in m the non-dimensional maximum transverse displacement
decreases monotonically from its maximum value kwPIk

max
1 for m ¼ 0. This means that reduced deflection



ARTICLE IN PRESS

0 10 20 30 40 50 60
�

0

20

40

60

80

100

120

λ P
I

0 10 20 30 40 50 60
�

0

0.1

0.2

0.3

0.4

0.5

||
w

PI
|| ∞

 

Fig. 4. For an elliptic plate with a ¼ 1, b ¼ 0 and b=a ¼ 0:5, the variation with m of (a) lPI and (b) kwPIk1.

0 5 10 15 20 25

�

0

10

20

30

40

λ P
I

||
w

PI
|| ∞

0 5 10 15 20 25

�

0

0.1

0.2

0.3

0.4

0.5

Fig. 5. For an elliptic plate with a ¼ 1, b ¼ 0 and b=a ¼ 0:75, the variation with m of (a) lPI and (b) kwPIk1.

–1.0

–0.5

0.0

0.5

1.0

z 1 -0.5

0.0

0.5

z2

–1.0

0.0

w

-8

-12

-22

–0.5

Fig. 6. Deformed shape of the elliptic plate with b=a ¼ 0:75 for a ¼ 1, b ¼ 0, m ’ 0:3mcr, l ’ 30, and kwk1 ’ 0:41, and fringe plots of the

Casimir pressure.

R.C. Batra et al. / Journal of Sound and Vibration 315 (2008) 939–960 953
ranges are allowable for small devices. By comparing results depicted in Figs. 4 and 5, we conclude that a
decrease in the aspect ratio of an elliptic plate from 0:75 to 0:5 significantly increases lmax

PI , and it does not
noticeably affect the difference kwPIk

max
1 � kwcrk1, where kwcrk1 is kwPIk1 corresponding to l ¼ 0.

Fig. 6 exhibits the deformed shape of the plate with b=a ¼ 0:75 near pull-in for m ’ 0:3mcr, i.e., when
l ¼’ 30 and kwk1 ’ 0:41. Fringe plots of the Casimir pressure given in Eq. (12) are also shown on the
deformed shape of the plate. It is clear that boundary conditions in Eq. (17a) are well satisfied, and as
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expected, the absolute value of the Casimir pressure is maximum around the plate centroid and minimum at
points near the supports.

5.2. Pull-in parameters from the analysis of frequencies of a deformed plate

In Fig. 7, we plot for two aspect ratios the fundamental natural frequency o0 of the deflected microplate
versus l for a ¼ 4, b ¼ 0 (that is, no initial stress) and two different values of m. The natural frequency is
normalized with respect to the value o0 corresponding to l ¼ 0. The trend is non-monotonic due to the
combined effect of the strain hardening represented by k3ðfÞ and the softening effect introduced by the
Coulomb and the Casimir forces. Indeed, from Eq. (41) it is clear that the overall effect of the Coulomb and
the Casimir forces is equivalent to a nonlinear spring with negative tangent stiffness. When the overall strain-
hardening effect is negligible, for example when m ’ 0:3mcr, the fundamental frequency monotonically
decreases to zero, as typically predicted by the linear theory.

The pull-in parameters correspond to values of l when the fundamental frequency of the deflected plate
vanishes. Values of l for which the lowest frequency approaches zero match with values of lPI obtained from
the analysis of the static problem described above.

Results in Fig. 8 show that for a ¼ 1 and b ¼ 0 the fundamental frequency monotonically decreases,
meaning that in this case the softening effect related to the Coulomb and the Casimir forces overwhelms the
strain hardening effect, induced by the stretching of the plate.

Pull-in parameters computed herein have not been compared with experimental data since none is available
in the current literature.
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Fig. 9. For a ¼ 1 (solid line) and a ¼ 4 (dashed line), variation with b of the critical Casimir force parameter mcr for (a) b=a ¼ 0:5, and
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5.3. Effect of the residual stress on pull-in and critical Casimir force parameters

In Fig. 9, we plot the variation with b of the critical Casimir force parameter mcr for two aspect ratios of the
elliptic plate, and also two values of a. We recall that the parameter b in Eq. (15) is a measure of the uniform
residual stress s in the microplate. For each case examined, we observe that mcr increases with increasing tensile
residual stress and decreases with increasing compressive residual stress. Indeed, from Eqs. (15) and (45), a
positive increment of prestress increases the overall stiffness, whereas a negative increment decreases the overall
stiffness. Thus, the residual stress affects the minimum size of the device that can be safely fabricated.

In absence of the Casimir force, that is, for m ¼ 0, Fig. 10 exhibits the variation with the prestress parameter
b of the pull-in voltage lPI for two aspect ratios of the elliptic plate, and also for two values of a. We note that
magnitudes of the initial compressive and tensile prestresses are limited, respectively, by the buckling
instability of the MEMS and the tensile strength of the material of the MEMS.

5.4. Pull-in parameters for a membrane

For a linear elastic membrane the equation

�
1

w
q2w

qxjqxj
þ

l

bð1þ wÞ2
þ

m

bð1þ wÞ4
¼ 0, (56)

governing static deflection under the action of the Coulomb and the Casimir forces is derived from Eq. (14a)
with the assumptions that a51 (small displacements), and bb1 (bending stiffness negligible as compared to
the stiffness due to the residual stress). Consistent with the von Kármán plate theory, the additional
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Fig. 11. For an elliptic clamped membrane with b=a ¼ 0:75, pull-in parameters versus the Casimir force parameter.

Table 3

For the elliptic membrane and m ¼ 0, comparison of pull-in parameters from the present one degree-of-freedom model with those obtained

with the finite difference method in [29]

b=a Finite differences [29] Present work

lPI kwPIk1 lPI kwPIk1

0.25 6.257 0.4287 6.581 0.5049

0.50 1.912 0.4302 1.936 0.4665

0.75 1.073 0.4475 1.085 0.4575

0.95 0.8254 0.4368 0.8256 0.4562
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hypothesis g05a and h5a are implicit in the model. Therefore, the linear membrane approximation is
applicable for microelectromechanical devices that experience small deflections and for which the bending
stiffness is negligible as compared to the in-plane stiffness due to a constant prestress in carrying the external
load. Eq. (56) shows that mcr varies linearly with b or, equivalently, that the ratio mcr=b is constant. The same
remark applies to lPI=b for a given m 2 ½0;mcr�. A reduced-order model for the linear membrane can be derived
from Eq. (38) by setting k1 ¼ k3 ¼ 0, and by computing m, k2, fe, and fc in formulae listed as Eq. (39) with the
nth basis function wm

ðnÞ for the transverse displacement given by

wm
ðnÞðx

1;x2Þ ¼ AnCe0ðx
1; q0nÞce0ðx

2; q0nÞ; n ¼ 1; . . . ;N; (57)

where An is a constant.
Pull-in parameters lPI=b and kwPIk1 versus m=b 2 ½0;mcr=b� are plotted in Fig. 11 for a clamped elliptic

micromembrane ðb=a ¼ 0:75Þ by taking N ¼ 1 in Eq. (57). They match very well with those obtained in Ref.
[29] by solving the two-dimensional governing equation with the finite difference method using a grid of
50� 70 points in the strip ½0; arctanhðb=aÞ� � ½0; 2p�. For m ¼ 0, the non-dimensional pull-in voltage and the
pull-in maximum displacement computed with the present one degree-of-freedom model are compared in
Table 3 with those predicted by the finite difference method [29]. It is clear that the present method, by using
only one degree-of-freedom for the transverse displacement, is able to reproduce within a good approximation
results computed with 3500 degrees of freedom in the finite difference scheme.

The pull-in voltage for the elliptic membrane is considerably more than that for the circular membrane of
radius equal to the major semi-axis of the ellipse. However, the pull-in deflection is essentially independent of
the aspect ratio of the ellipse.

5.5. Remarks

In the literature, see for example Ref. [17], simple lumped models have been extensively used to analyze pull-
in instability in MEMS. Despite being very simple, the accuracy of these models is often very limited. In what



ARTICLE IN PRESS
R.C. Batra et al. / Journal of Sound and Vibration 315 (2008) 939–960 957
follows we illustrate the application of the classical lumped model to the simplest case of a linear plate without
initial stress and in absence of the Casimir force. In this case, the MEMS is modeled as a parallel plate
capacitor, where both plates are rigid. The upper plate is suspended by a linear spring, and the bottom plate is
held fixed. z is the displacement of the upper conductor, and it represents the maximum value of the
displacement w of the distributed system. The lumped one degree-of-freedom model is

�kz ¼
l

ð1þ zÞ2
, (58)

where k is the non-dimensional spring stiffness. The constant k may be computed by solving a sample static
problem on the distributed system without the Coulomb force. Typically, a uniformly distributed load on the
movable conductor is considered, see for example Refs. [44,36]. In this case, the stiffness k is equal to
1=kw%k1, where w% is the solution in elliptic coordinates of the boundary value problem

1

w
q2

qxkqxk

1

w
q2w%

qxjqxj

� �
ðx1; x2Þ ¼

Y4

ð1�Y2Þ
2
, (59a)

w%ðx1
b;x

2Þ ¼ 0;
qw%

qx1
ðx1

b;x
2Þ ¼ 0. (59b)

The solution of Eq. (59) is, see for example Ref. [59],

w%ðx1; x2Þ ¼
ðcosh 2x1 � cosh 2x1

bÞ
2
ðcos 2x2 � cosh 2x1

bÞ
2

128ð2þ cosh 4x1
bÞsinh

4x1
b

: (60)

Therefore

k ¼
1

kw%ð0; 0Þk1
¼

8ð2þ cosh 4x1
bÞ

sinh4x1
b

. (61)

By solving the equilibrium Eq. (58) along with the pull-in instability condition

k �
2lPI

ð1þ zPIÞ
3
¼ 0, (62)

obtained by setting the overall tangent stiffness equal to zero, we obtain the following expressions for pull-in
parameters from the lumped model

zPI ¼ �
1

3
; lPI ¼

4

27
k. (63)

By setting a ¼ 0, b ¼ 0, and m ¼ 0 in Eq. (38) we obtain the reduced-order model of a linear elliptic microplate
without the prestress and without the Casimir force. We note that by setting a ¼ 0 there is no coupling
between in-plane and transverse displacements. Therefore, the reduced-order model for the linear plate is
independent of the number of basis functions for the in-plane displacement.

For a ¼ 0, b ¼ 0, m ¼ 0, and different aspect ratios of the elliptic plate, we compare in Table 4 the pull-in
parameters of the linear plate computed with the lumped model and with the present reduced-order model
Table 4

For the linear elliptic plate (a ¼ 0) with b ¼ 0 and m ¼ 0, comparison of pull-in parameters from the present one degree-of-freedom model

with those obtained with the lumped model in Ref. [17]

b=a Lumped model [17] Present work

lPI kwPIk1 lPI kwPIk1

0.50 69.9 0.333 109 0.477

0.75 19.0 0.333 43.1 0.471

0.95 10.5 0.333 17.2 0.471
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with N ¼ 1. The lumped model gives inaccurate results with respect to the converged solution of the reduced
order model proposed in the paper, with the error for lPI as high as ’ 56% when b=a ¼ 0:75.

The reduced-order models presented herein can be employed to select among several possible designs of
MEMS. The final few designs can then be thoroughly studied with a three-dimensional finite element (or any
other) code to see if the pull-in parameters and the maximum stresses induced in the deformable plate stay
within the design limit. The pull-in parameters under effects of the Casimir and the Coulomb forces for
circular and rectangular plates have been studied by Batra et al. [62].

We note that the relation given by Eq. (12) for the Casimir force between two parallel plates is valid when
the gap between the two plates exceeds 1mm, see Ref. [33]. Thus results presented herein are valid for initial
gap between the two plates of a few micrometers. For initial gaps of the order of a few nanometers, one needs
to consider the van der Waals force rather than the Casimir force [33].
6. Conclusions

We have derived reduced-order models for clamped microelectromechanical von Kármán elliptic plates
subject to both the Coulomb and the Casimir forces. The nonlinear governing equations for the three
displacement components are coupled. Static pull-in parameter, and small vibrations about equilibrium
configurations of a plate statically predeformed by the applied voltage and the Casimir force are analyzed. The
first natural frequency rapidly drops to zero when the applied voltage approaches the pull-in voltage.

We have employed the Galerkin method using basis functions defined on the entire domain and satisfying
prescribed kinematic boundary conditions. The method is meshless in the sense that no discretization of the
domain is required. It is found that 20 basis functions for the in-plane displacement and 1 basis function for
the transverse displacement give converged results. Because of the coupling between in-plane and transverse
displacements, the number of degrees of freedom in the reduced-order model equals the number of basis
functions for the transverse displacement. Accurate values of the pull-in parameters can be obtained with 6
basis functions for the in-plane displacements.

The reduced-order model for a plate is simplified to that for the corresponding membrane by neglecting the
bending stiffness of the plate. Pull-in parameters for elliptic membranes from the one degree-of-freedom model
are found to agree well with those obtained by solving numerically the complete set of governing equations
with the finite difference method using 3500 grid points. Thus the present approach is considerably more
computationally efficient.

Critical values of the Casimir force parameter for the elliptic plates and membranes have been determined.
These give dimensions of MEMS that can be safely fabricated.
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[37] L.M. Castañer, S.D. Senturia, Speed-energy optimization of electrostatic actuators based on pull-in, Journal of Microelec-

tromechanical Systems 8 (3) (1999) 290–298.

[38] Y. Zhang, Y.-p. Zhao, Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading, Sensors

and Actuators A: Physical 127 (2006) 366–380.

[39] R.C. Batra, M. Porfiri, D. Spinello, Electromechanical model of electrically actuated narrow microbeams, Journal of

Microelectromechanical Systems 15 (5) (2006) 1175–1189.

[40] R.C. Batra, M. Porfiri, D. Spinello, Vibrations of narrow microbeams predeformed by an electric field, Journal of Sound and Vibration

309 (3) (2008) 600–612.

[41] F.M. Serry, D. Walliser, G.J. Maclay, The role of the Casimir effect in the static deflection and stiction of membrane strips in

microelectromechanical systems (MEMS), Journal of Applied Physics 84 (5) (1998) 2501–2506.

[42] J.-N. Ding, S.-Z. Wen, Y.-G. Meng, Theoretical study of the sticking of a membrane strip in MEMS under the Casimir effect, Journal

of Micromechanics and Microengineering 11 (2001) 202–208.
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